
生产厂家来图纸打样不锈钢M2螺丝|马桶盖平头螺丝,
一字槽是X古老的一种槽型,对所有的驱动系统来说这也是X普遍的,割沟制造方式有两种 : 一种是在完整头型之螺丝上以割沟机械修出割沟,另一种则是在成型锻造时一次成型.一次成型割沟比较经济,因为它无需二次加工,但在某些方面仍有问题,例如六角头或六角华司头使用直接成型, 则由于凹陷( Indented )处之故将使割沟深难以测量,更严重的是会减少螺丝与起子的接合面,直接成型用在圆头时,接合面不变,但是成型压力将迫使头径加大,特别是在割沟处两侧,在某些头型使用直接成型时,头部尺寸相当难以控制.
割沟为凹陷的一种型式,对所有头型除了平顶整缘及扁圆顶整圆外都是标准型式,对每种头型之割沟尺寸规定在B18.6.4. 割沟特别适合于手工组合,但不适合半自动或全自动装配.这种驱动系统的效果取决于头部的高度和平整度,像平头和岗山头,这是因为头高越大,割槽越深,而头部越平整,驱动力就会更靠近头部的外缘,扭矩更X.若在实际应用时,要求更高的扭矩,剪切是一个问题.即使是较深的结合,在驱动起子和一字槽之间也很难找到很好的配合.而目前存在于驱动器和紧固件之间的空隙,会引起不垂直性.当驱动器在外力作用下没有垂直时,起子会损坏一字槽的边缘而引起剪切. 头部越小或者越圆,这种现象越容易发生.
一字槽不太适用于快速安装,例如装配在线,驱动起子会从槽的一端滑到另一端, 如果驱动起子的中心基本和紧固件的中心对齐,则驱动起子X.如果没有对齐,那肯定会导致头部损坏,同样,驱动起子也可能旋落到表面,直接作用在紧固件上,引起损坏.随著扭矩加大的需要,也要求加载以防止剪切.
一字槽不存在制作问题,但在大多数情况下,也确实需要X二次割槽成形,驱动起子的X性目前并没有问题.一字槽X适用于那些不要求高扭矩的地方,尤其是那些需要在许多不同的环境下装卸和调整的,X好的例子就是化油器上的调整螺丝.同样这种槽型也常用在易消耗的,需修理和拆卸的紧固件上,例如 : 割草机, 旋转设备等等.
为了因应自动化装配的大量采用而发展出一些凹陷头型,其保留了高扭矩,作业容易且高速装配,同时有相当多之头型使用相当普遍, B18.6.4承认了其中三种型式为标准.均为十字穴, 分别为型I 十字( Philips ), 型IA米字( Pozidriv ), 型II ( Frearson ). 尺寸请参照18.6.4规定.型IIX早发展出来,接下来是型I, 型IA则为型I之改良型, 其中型I及型IAX为普遍,型II则需求越来越少.
十字槽源自十字形槽穴范畴, 像十字路口.十字槽的边倾斜交于槽底部的中间, 通常位于紧固件头部的中心.它相对比较深,能够帮助驱动起子校正.有时槽深已经到达紧固件的颈部,在这种情况下,紧固件的强度极限被潜在的削弱.它仅适用于从低到中的扭矩需要,因为它的无法避免的易滑出性,这也是由槽形的斜边造成的.总的来说,每英寸1.7磅 - 1磅的扭矩,不会引起滑出,但X过这个数值的扭矩作用在十字槽上时, 就会导致滑出,恶性循环.许多时侯, 这种恶性循环会使得紧固件的槽形彻底失去工作能力.这种恶性循环同样会引起驱动起子的损耗,在很多情况下工具的寿命都会缩短, 增加成本.十字槽具备良好的校正性,适用于自动装配线.制作上没有任何问题, 在头部成形时一次成形,不需要再做X二次加工.工具应用广泛.适用于手动和自动装配在线低扭矩要求的埸合, 例如 : X薄钢板到薄钢板, 薄钢板到软木, 软塑料.
六角穴承窝驱动系统正如他的名字所表示的,在紧固件的头部有一个六角形穴, 常用Socket head cap screws”, 一种高强度紧固件.六角穴适用于高扭矩的埸合.对这种驱动系统来说,滑出不是问题, 但由于驱动扳手和紧固件之间的结合特性,只用过几次,穴和扳手就会变形.为了保证结合,穴和工具的尺寸都有一个通用的公差, 但这也只能减少实际表面接触,和设施损耗. 这种类型的紧固件价格较高,如果用在那些需要经常拆卸的埸合,将大大增加成本.制作工艺上没有大问题,为一次成形. 在这之前,六角穴需要经过两道制程成形 - 钻孔和冲孔.适用的工具称为”六角扳手”, 分为两大类, 短臂和长臂. 六角扳手是六角形棒钢弯曲成L形,对于固定的尺寸,长臂扳手长度比例比短臂扳手要大,其X性没有问题.在自动装配在线,也会用六角起子来驱动.六角穴通常用于高扭矩的埸合,使用状况是否理想很大程度上取决于反覆使用的次数,对于需频繁拆卸的紧固件,它并不经济,因为槽和工具易变形,增加成本.六角穴多用于中型设备和重型设备上装配用的高强度紧固件.
齿状六角穴头(SPLINE RECESS)基本上是圆形的, 在承窝内与紧固件轴平行的方向内有六个直角肋.齿状六角穴头的应用与六角穴头的应用是一样的, 是用于高扭矩场合. 它的设计确是使六角穴头及工具的磨损降低到X小.齿状六角穴头的主要缺点是在制造穴头及工具上. 穴头由于其设计复杂, 必须在紧固件打头时成形. 由于其有许多尖锐角度,所以生产时极难控制在要求的公差内.生产中用于制造穴头的工具寿命极短,因此一般会增加紧固件成本.对于生产驱动工具来说,也有同样的问题.由于供应商有限,齿状六角穴驱动工具比前述任何驱动工具难以买到.齿状六角穴头应用于高扭矩
场合, 但由于制造困难经常产生供应问题 - 尤其需求量大时. 当选用驱动系统时应把供应短缺考虑进去.
TORX RECESS (梅花穴头) : 梅花穴头是Camcar公司设计X.它的设计解决了所有上述穴头驱动系统存在的问题.梅花穴头是一种六角叶片设计,具有直的内边及较浅的穴头. 这种设计的扭矩传递是面支撑而不是像大部分穴头的点支撑. 因此可使扭矩传递的效率提高.直边可消除扭转时的滑动趋势及端部负荷.这些均使梅花穴头在实践中有X好的驱动结合以传递扭矩.事实上由于梅花穴头一般比其它穴头浅,这意味著扭紧力不会因为穴头深度而产生损失.这种设计有著极其X良的特性使它成为自动装配在线理想的工具.在制造中亦无问题.穴头是在打头进程中成形的.由于梅花穴头有著许多圆弧,而不是直角,制造工具磨损也不明显.严格的公差保证了X大的结合.
另外梅花穴头有多个X商可为用户提供多种货源.工具可从许多来源获得.梅花穴头对任何扭矩应用要求, 无论对手动或自动装配均是极适用的. 它的设计可消除滑动, 因此可传递更大的扭矩,更长的穴头寿命及制造工具寿命.这些X点均可降低紧固件的成本.梅花穴头可以应用于大扭矩场合,尤其是重复使用,如重型机器及设备. 梅花穴头可用于自动装配.这是因为穴头不会因变形而需返工, 工具有很长的使用寿命,工人疲劳导致的操作错误也因此而减少.在应用中及自动工业上, 梅花穴头正越来越受欢迎. 梅花穴头适用于几乎任何高速装配的场合.
外六角 : 外六角驱动系统是通用头型并被广泛应用.它被用于多种扭矩要求的自动装配.其适用于中, 低扭矩场合.在高扭矩场合,同六角穴头的问题是一样的.这样紧固件头部将变形且驱动工具会磨损.因为压力而导致的裂纹,用于驱动六角头的套筒寿命经常很短. 这将大大增加紧固件的成本.
有两种类型的六角头驱动系统. 它们的制造不同. 六角凹头(INDENT HEX)是一种经济的头型.它是打头时一并成型的, 无需两次工序. 整缘六角头(TRIMMED HEX)是较贵的一种.打头后,再X二道工序加工六角面. 这会使角度更尖锐, 有利使用性能并且外观好看. 另外, 两种类型的六角头有时头部会开槽, 这样有必要时亦可用起子驱动.
驱动工具相当普及.外六角适用于手动, 自动装配的中, 低扭矩使用场合.额定扭矩一定要记住. 当紧固件及其驱动工具变形时, 其余系统应当重新检查. 外六角头紧固件在各种钢板的装配非常有用.
十二棱头 : 十二棱驱动系统是高强度外扳手系统主要用于飞机工业.十二棱设计是基于圆柱加上适度的顶点 - 正如名称所指 - 十二棱. 当用于飞机工业时,会沿头部中心钻孔至头部高度的2/3高处以减少重量.十二棱主要用于高强度紧固件.这种紧固件应用于大扭矩场合.这种头部的驱动是使用相同结构的套筒.十二棱系统一般X于外六角系统,但缺点是一样的. 紧固件驱动结合主要是在棱上而不是在面上. 当重复使用时, 棱易于磨损变成圆形而使紧固件扭转不动. 驱动套筒还有一个缺点. 因为这种结构紧固件所承受的扭矩反作用在套筒内壁而导致开裂.这种紧固件本身很贵, 该缺点亦增加其成本.十二棱结构的制造比许多其它类型的结构难, 但它亦是打头中成型的.一般可取得驱动工具.十二棱驱动系统商业上用于高强度场合. 尤其用于COUNTERBORE场合, 重型机器及设备以及飞机上.
外梅花头 : 梅花驱动系统适用于所有外扳手驱动场合.梅花型驱动设计是六角叶状, 有平行于紧固件轴线直边, 高度适中. 叶状在驱动时是面接触而不像其它大多数驱动系统为点接触. 这使驱动力矩传递更X率.梅花外驱动系统可用于任何扭矩要求, 但它X适用与高, 中扭矩场合.它的快速, 方便与驱动工具自动及结合使它极适合于自动装配外梅花头型像其它外头型一样用套筒驱动. 由于它是用支撑面X传递扭矩, 套筒基本上不会损坏, 因此节约了驱动工具之成本, 从而大大降低高速, 大量应用时的紧固件成本.紧固件头部即使重复使用也绝不会变形. 这节约了在装配时的紧固件成本, 服务及返工.梅花设计头部易在严格公差内成型, 所有制造也没有问题.工具也可从几个大的X度很高的供应商买到.这种头型是解决自动装配问题包括工具损坏及紧固件变形的方法. 梅花驱动适用于在手动或自动装配要求高扭矩的大多场合.梅花头可适用于装配,汽车,重型机器及设备等. 梅花头极适用于螺纹切削和螺纹成型自攻螺丝. 这时多余扭矩是必须的场合. 梅花头用途是多种多样的.